China Hot selling Timing Pulley, Mortor Pulley, 18 Tooth, Type-XL pulley system

Product Description


Product name Timing Pulley, Mortor Pulley, 18 tooth TYPE-XL, Aluminum-Clear Anodize
Material  Aluminum 
Production Capacity 10000PCS /Month
Application Our products are widely used in mechanical components parts for Industrial
Specification According to customer’s drawing or sample.
Services OEM, design, customized
Tolerance  According to Drawing
Surface treatment – Passivation
– Polishing
– Anodizing
– Sand blasting
– Electroplating(color, blue, white, black zinc, Ni, Cr, tin, copper, silver)
– Hot-dip galvanizing
– Black oxide coating
– Electrophoresis
– Heat-disposing(Normalizing, Annealing, Quenching, Tempering, etc.)
– Spray-Paint
– Rust preventive oil
MOQ 100 piece
Package Plastic, Carton, Plywood Case, Pallet
Samples We can make sample.
Certificate ISO9001: 2015 quality management system certificate
Payment Terms Bank Transfer
Delivery time Subject to negotiation date
Shipping Port ZheJiang


    Since 2000, we have been maintaining certification, standardizing the company’s business activities in accordance with the requirements of quality management system standards, and taking increasing customer satisfaction as our business purpose.



Packaging steps: 
Each piece put in on carton box, wood case, Plastics Packaging, pallet, etc.
Mode of shipping: 
Shipping by air, sea or car.
By sea for batch goods;
Customs specifying freight forwarders or negotiable shipping methods.


1. Could make product for customer according to customer samples or drawings.
2. Can deal with various drawings soft wares:  PRO/E,  Auto CAD,  Slid Work,  UG, etc.
3. Could offer samples for free if the sample is simple and low value.
4. Submit samples with official inspection reports including  material report,mechanical property report and dimensional report.
5. Can provide the third party inspection report.
6. Could provide at least 1 year quality guarantee after customer receives the products.
7. We could supply storage service for customer if required.

– FAQ –

Q1. How can we quote for you?
Please  send  us enquiry  by email, with all  the  technical  drawings  you  have. Such  as  material  grade,  tolerance,  machining  demands,  surface  treatment, heat treatment, mechanical property requirements, etc. Our specialized engineer will check and quote for you, we would appreciate the opportunity and will respond in 3-5 working days or less. 
Q2. How can I get a sample to check your quality?
After price confirmed, you can requiry for samples to check quality.
If you need the samples, we will charge for the sample cost.
But the sample cost can be refundable when your quantity of first order is above the MOQ.
Q3. Can you do OEM for us?
Yes, the product packing can be designed as you want.
Please feel  free to contact us if you have any question.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: CE, ISO
Manufacturing Process: Forging
Material: Aluminum
Surface Treatment: Electroplating
Application: Chemical Industry, Grain Transport, Mining Transport, Power Plant
Teeth: 18
US$ 100/Piece
1 Piece(Min.Order)

Request Sample



Customized Request

timing pulley

Can timing pulleys be used in both simple and complex machinery?

Yes, timing pulleys can be used in both simple and complex machinery. Here’s an explanation:

Timing pulleys are versatile components that are widely utilized in a range of mechanical systems, irrespective of their complexity. Whether the machinery is simple or complex, timing pulleys offer several advantages that make them suitable for various applications.

In Simple Machinery:

Timing pulleys are commonly found in simple machinery where the power transmission requirements are relatively straightforward. For example, in small appliances such as electric fans or hand drills, timing pulleys can be used to transfer power from the motor to the rotating components. The simple design and ease of installation make timing pulleys a convenient choice for these types of applications.

In Complex Machinery:

Timing pulleys also find extensive use in complex machinery where multiple components need to be synchronized and powered efficiently. In industries such as automotive, robotics, printing, packaging, and manufacturing, complex machinery often relies on timing pulley systems to achieve precise coordination and power distribution.

The versatility of timing pulleys lies in their ability to handle various power transmission requirements. They can transmit power over long distances, accommodate different torque loads, and operate at high speeds. Timing pulley systems can be configured with different gear ratios by selecting pulleys of varying sizes, enabling customization based on the specific needs of the machinery.

Moreover, timing pulleys can be combined with other mechanical components such as tensioners, idler pulleys, and gears to optimize the performance of the machinery. These additional components help maintain proper tension, increase or decrease rotational speed, and ensure smooth operation.

Whether the machinery is simple or complex, timing pulleys offer benefits such as accurate timing, reliable power transmission, load distribution, and reduced wear and friction. These advantages contribute to the overall efficiency, performance, and longevity of the machinery.

In summary, timing pulleys are versatile components that can be used in both simple and complex machinery. Their flexibility, reliability, and ability to handle various power transmission requirements make them a valuable choice across a wide range of applications.

timing pulley

How do timing pulleys impact the performance of 3D printers?

Timing pulleys play a significant role in determining the performance and accuracy of 3D printers. Here’s an explanation of how timing pulleys impact the performance of 3D printers:

1. Motion Control:

Timing pulleys, in conjunction with belts or chains, are used to control the movement of the print head and build platform in 3D printers. The motor drives the driving pulley, which is connected to the print head or build platform through a timing belt or chain. The driven pulley on the print head or build platform receives the rotational motion from the driving pulley, resulting in precise and synchronized movement. The accuracy and quality of the printed object depend on the precise control and synchronization facilitated by the timing pulleys.

2. Positioning Accuracy:

Timing pulleys contribute to the positioning accuracy of 3D printers. The teeth on the timing belt or chain mesh with the teeth on the pulleys, creating positive engagement. This ensures that the print head or build platform moves precisely according to the instructions from the control system. The accuracy of the timing pulley system directly affects the dimensional accuracy and surface finish of the printed object.

3. Speed and Acceleration:

Timing pulleys allow for control of the speed and acceleration of the print head and build platform in 3D printers. By varying the diameter or the number of teeth on the pulleys, different gear ratios can be achieved. This enables printers to control the speed and acceleration of the print head or build platform, affecting printing time, print quality, and the ability to handle intricate details and complex geometries.

4. Print Resolution:

The resolution of a 3D printer refers to the smallest feature size that can be accurately reproduced. Timing pulleys play a role in determining the achievable print resolution. The finer the pitch and the more teeth per unit length on the timing belt or chain, the higher the resolution that can be achieved. Timing pulleys with smaller teeth allow for finer positioning and more precise movement, enabling the printer to produce objects with intricate details and smooth surfaces.

5. Noise and Vibration:

Properly designed and maintained timing pulley systems contribute to reducing noise and vibration in 3D printers. Well-aligned and tensioned timing belts or chains, along with accurately machined pulleys, minimize backlash and ensure smooth and quiet operation. This is particularly important during rapid movements and changes in direction, as excessive noise and vibration can affect print quality and overall printer performance.

6. Maintenance and Durability:

The durability and maintenance requirements of the timing pulley system impact the overall performance of 3D printers. High-quality timing pulleys and belts or chains are essential to ensure longevity and reliable operation. Regular inspection, tensioning, and replacement of worn or damaged components are necessary to maintain optimal performance and prevent print quality issues caused by a degraded timing pulley system.

7. Extruder and Filament Control:

In addition to controlling the movement of the print head and build platform, timing pulleys may also be used in the extruder assembly of 3D printers. Timing pulleys help drive the filament feeding mechanism, ensuring consistent and controlled extrusion of the filament during the printing process. The accurate and synchronized movement facilitated by the timing pulleys contributes to maintaining filament tension and preventing issues such as under-extrusion or filament jams.

By understanding the impact of timing pulleys on 3D printer performance, manufacturers and users can optimize the design, calibration, and maintenance of the timing pulley systems to achieve accurate, reliable, and high-quality 3D prints.

timing pulley

Can you explain the importance of precision in timing pulley systems?

Precision is of utmost importance in timing pulley systems due to the critical nature of their applications. Here’s an explanation of why precision is essential in timing pulley systems:

1. Accurate Timing and Synchronization:

Precision ensures accurate timing and synchronization between the driving and driven components in a mechanical system. Timing pulley systems are commonly used in applications where precise motion control is necessary, such as engines, robotics, CNC machines, and automated systems. Any deviation from the intended timing can lead to errors, malfunctions, or decreased performance in these systems.

2. Consistent Power Transmission:

In a timing pulley system, the teeth on the timing pulley engage with the teeth on the timing belt, creating a positive drive system. Precision in the design and manufacturing of the timing pulley and timing belt ensures consistent power transmission without slippage or backlash. This reliability is crucial in applications that require accurate speed ratios, torque transmission, and consistent performance.

3. Positioning and Indexing Accuracy:

Precision in timing pulley systems allows for precise positioning and indexing of components. The teeth on the timing pulley and belt ensure accurate movement and positioning, enabling repeatable and controlled motion. This is essential in applications such as automated assembly lines, 3D printers, and precision motion control systems, where precise positioning is critical for achieving desired outcomes.

4. Reduced Wear and Maintenance:

Precision in timing pulley systems leads to reduced wear and maintenance requirements. When the teeth of the timing pulley and belt mesh precisely, there is minimal abrasion and elongation of the belt, resulting in increased longevity. Additionally, precise timing and synchronization minimize stress on the system, reducing the need for frequent adjustments and replacements.

5. Noise and Vibration Reduction:

Precision in timing pulley systems helps minimize noise and vibration. When the teeth of the timing pulley and belt are precisely matched, there is a smooth transfer of power, reducing noise generation and vibration. This is particularly important in applications where noise and vibration can affect the performance or comfort of the system, such as in precision instruments or equipment used in quiet environments.

6. System Reliability and Performance:

Precision contributes to the overall reliability and performance of timing pulley systems. Accurate timing, synchronization, and power transmission ensure that the system operates as intended, minimizing the risk of failures, errors, or inefficiencies. Reliable performance is crucial in critical applications where downtime or errors can have significant consequences.

In summary, precision is vital in timing pulley systems to achieve accurate timing and synchronization, consistent power transmission, precise positioning and indexing, reduced wear and maintenance, noise and vibration reduction, and overall system reliability and performance. Attention to precision during the design, manufacturing, installation, and maintenance of timing pulley systems is essential to ensure optimal functionality and meet the specific requirements of the application.

China Hot selling Timing Pulley, Mortor Pulley, 18 Tooth, Type-XL   pulley system	China Hot selling Timing Pulley, Mortor Pulley, 18 Tooth, Type-XL   pulley system
editor by CX